1,590 research outputs found

    Cerium, gallium and zinc containing mesoporous bioactive glasscoating deposited on titanium alloy

    Get PDF
    Surface modification is one of the methods for improving the performance of medical implants inbiological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 Vsubstrates by dip-coating method in order to obtain an inorganic\u2014organic hybrid coating (MBG-PCL).Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 m. Glass andpolymer phases were detected in the coating along with the presence of biologically potent elementscerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samplesin simulated body fluid (SBF) for up to 30 days at 37\u25e6C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In thisway, an attempt was made to develop a new biomaterial with improved in vitro bioactive response dueto bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biologicalproperties of cerium, gallium and zinc

    In Vitro versus In Vivo Phase Instability of Zirconia-Toughened Alumina Femoral Heads: A Critical Comparative Assessment

    Get PDF
    A clear discrepancy between predicted in vitro and actual in vivo surface phase stability of BIOLOX (R) delta zirconia-toughened alumina (ZTA) femoral heads has been demonstrated by several independent research groups. Data from retrievals challenge the validity of the standard method currently utilized in evaluating surface stability and raise a series of important questions: (1) Why do in vitro hydrothermal aging treatments conspicuously fail to model actual results from the in vivo environment? (2) What is the preponderant microscopic phenomenon triggering the accelerated transformation in vivo? (3) Ultimately, what revisions of the current in vitro standard are needed in order to obtain consistent predictions of ZTA transformation kinetics in vivo? Reported in this paper is a new in toto method for visualizing the surface stability of femoral heads. It is based on CAD-assisted Raman spectroscopy to quantitatively assess the phase transformation observed in ZTA retrievals. Using a series of independent analytical probes, an evaluation of the microscopic mechanisms responsible for the polymorphic transformation is also provided. An outline is given of the possible ways in which the current hydrothermal simulation standard for artificial joints can be improved in an attempt to reduce the gap between in vitro simulation and reality

    Multi-spectroscopic analysis of high temperature oxides formed on cobalt-chrome-molybdenum alloys

    Get PDF
    Thanks to their thermal stability, resistance to oxidation and mechanical strength, cobalt -chrome molybdenum alloys are considered an ideal alloy for high temperature applications. The surface oxide layer evolves as a function of time and temperature, changing its chemical structure and increasing its thickness from a few nanometers to various microns. Making use of various diffractographic and spectroscopic techniques, namely X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and glow-discharge optical emission spectroscopy, coupled with complementary analysis, this work gives new insights on the chemical bonding, crystallographic structure, thickness and elemental composition of the oxide layers as a function of both time and temperature of oxidation. Results show that the initial nanometric passive layer of Co3O4 evolves into a metastable, sub-micrometric CoCrO4 structure and finally stabilizes into a micrometric Cr2O3 at the highest temperatures. This paper fills a fundamental gap in the understanding of the chemistry and stability of Cobalt-based alloys used for high temperature applications, such as in poppet or exhaust valves, aerospace components or hot gas turbines. Once calibrated, this innovative, complete surface characterization approach can be ideally extended to other metallic alloys. (C) 2022 The Author(s). Published by Elsevier B.V

    Bioactive silicon nitride: A new therapeutic material for osteoarthropathy

    Get PDF
    While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant's surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases

    Raman Molecular Fingerprints of Rice Nutritional Quality and the Concept of Raman Barcode

    Get PDF
    The nutritional quality of rice is contingent on a wide spectrum of biochemical characteristics, which essentially depend on rice genome, but are also greatly affected by growing/environmental conditions and aging during storage. The genetic basis and related identification of genes have widely been studied and rationally linked to accumulation of micronutrients in grains. However, genetic classifications cannot catch quality fluctuations arising from interannual, environmental, and storage conditions. Here, we propose a quantitative spectroscopic approach to analyze rice nutritional quality based on Raman spectroscopy, and disclose analytical algorithms for the determination of: (i) amylopectin and amylose concentrations, (ii) aromatic amino acids, (iii) protein content and structure, and (iv) chemical residues. The proposed Raman algorithms directly link to the molecular composition of grains and allow fast/non-destructive determination of key nutritional parameters with minimal sample preparation. Building upon spectroscopic information at the molecular level, we newly propose to represent the nutritional quality of labeled rice products with a barcode specially tailored on the Raman spectrum. The Raman barcode, which can be stored in databases promptly consultable with barcode scanners, could be linked to diet applications (apps) to enable a rapid, factual, and unequivocal product identification based on direct molecular screening
    • …
    corecore